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Abstract. Itisshown that quantum field theory admits at least one local and causal extension
which gives the same statistical predictions. A general algebraic formalism for the study
of such extensions is presented. Quantum field theory and the corresponding extensions
are considered in the framework of the Haag-Kastler approach. Obstruction due to the
Bell inequalities is overcome by the use of a generalized probability theory.

1. Introduction

The aim of this paper is to present a general algebraic formalism for the study of
causal and local field theories that are compatible at the statistical level with quantum
field theory.

The paper is a logical continuation of an earlier study [6] where an algebraic
formalism for contextual hidden variables, based on classical statistics, was presented.

In the present paper, we shall deal with local hidden variables within the algebraic
quantum field theory scheme.

The following are the most important relations between [6] and the present study.

(i) Contextuality and local contextuality. As in [6], we deal here with contextual
hidden variables. Let us recall that contextuality allows us to overcome obstructions
which are implied by the classical works of von Neumann [15], Gleason [9], Bell [2]
and others (see [3]). The obstructions mentioned are directly related to the problem
of a consistent definition of subquantum states.

In a contextual hidden variable theory the value of a given quantum observable in
a given subquantum state also depends on the measurement context [19]. Following
[6], we shall interpret the contextuality as a consequence of inadequacy of the algebra
of quantum observables for the complete description of physical reality.

However, in this paper we are interested in local theories only. This means that
only a specific form of contextuality, the local contextuality, is admissible. The local
contextuality forbids any correlation between results of quantum measurements per-
formed in mutually causally (space-like) separated regions of space-time.

(ii) Classical and non-classical probability concepis. In any local and causal theory,
classical (=Kolmogorovian) probability distributions satisfy Bell’s inequalities [1]. On
the other hand, Bell’s inequalities are violated in quantum mechanics. Therefore, each
hidden variable theory based on classical statistics and statistically compatible with
quantum mechanics must be non-local.

0305.4470/92/030665 + 13504:50 © 1992 10P Publishing Ltd 665



666 M Burdevié

However, the situation changes essentially if we generalize the concept of probabil-
ity. In the framework of a (suitable) generalized statistics a unification of quantum
mechanics, locality and causality becomes possible [7, 10-12, 16, 17]. Having this in
mind one can justify the point of view according to which Bell’s inequalities are not
directly connected with locality, but rather with the type of statistics allowed. In implicit
form, this statement is contained in Fine’s theorem [8] too.

So far with quantum mechanics. A similar situation appears in algebraic quantum
field theory as well. According to the work of Summers and Werner [20-22] Beli’s
inequalities are violated in this theory. In particular, Bell’s inequalities are maximally
violated int both Bose and Fermi free field theories in the vacuum state [21].

Consequently, the use of some kind of non-classical statistics in local causal
refinements of algebraic quantum field theory (if such structures exist) is unavoidable.

In contrast to [6], the present paper is based on a ‘contextual’ modification of
classical statistics. The paper is organized as follows. In section 2 we first describe the
quantum structure. This includes basic axioms of quantum field theory as well as a
representation for the measurement contexts. Quantum field theory will be treated in
the framework of the algebraic approach of Haag and Kastler {13].

Concerning contexts, we shall distinguish two types: simple and composite. By
definition, a simple context corresponds to a single (irreducibie) measurement situation.
On the other hand, composite contexts correspond to compositions of single measure-
ments performed in causally separated regions of the spacetime. '

Our next step is to formalize, in the framework of the Haag-Kastler approach, the
idea of local contextual refinements. This will be done with the notion of local contextual
extension. We then construct, starting from the quantum structure, an important C*
algebra, denoted by Letx, and a local contextual extension which naturally corresponds
to this algebra. We also show that the ‘universality’ of the algebra Letx, with respect
to an arbitrary local contextual extension, holds.

For our discussion, the most interesting local contextual extensions are those in
which the statistics in the quantum states are interpretable as lack of knowledge about
‘complete states’. Structures of this kind are investigated in section 3. The precise
formulation leads to the notion of local hidden variable (LHV) extension. We establish
the possibility LHvs by showing that the extension associated with the algebra Lctx is
an LHV extension. We then analyse the most important general properties of LHv
extensions. For a given LAV extension we introduce the concept of the complete
(subquantum) state, of the subquantum space and of the ‘classical’ projection of the
complete theory.

The mentioned modification of classical statistics, which is necessary to overcome
the obstruction by Bell's inequalities, is contained only implicitly in the notion of an
LHV extension. The analysis of the statistics of LHv extensions is the topic of section
4. We shall first introduce a general concept of ‘contextual event space’ and of a
probability measure on it. We formulate an analogue of the weak law of large numbers
for this ‘contextual statistics’, which ensures the possibitity of relative-frequencies
interpretation of probabilities. We then show that the subquantum space {) of a given
LHV extension naturally has the structure of a contextual event space and that each
quantum state gives rise to a probability measure on it, The correspondence

{states on X} > {probability measures on {3}

then allows us to interpret quantum stochasticity as a consequence of a lack of
knowledge about hidden variables w € {).
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Finally, we show that any representation D of the algebra = of quantum observables
in a Hilbert space H naturally determines a ‘projector valued measure’ ¢p on the
subquantum space (). This entity contains all the information about the lack-of-
knowledge interpretation of the quantum states in H. It can be considered as a ‘quantum
interpreter’ of ‘quantally actualizable’ subquantum events.

Int this paper, we shall deal with C* algebras with unity and with unity-preserving
homomorphisms. An ideal means a closed two-sided ideal.

2. Local contextual extensions

We start our analysis with a description of the quantum structure. Let I be the family
of all double cones in the Minkowski space-time M*.

The principal entity of the ‘quantum world’, the C* algebra of all quantum
observables, will be denoted by 2. We shall suppose that each U el gives rise to a
C* subalgebra X, of X, consisting of all observables ‘localized’ in U, We shall also
suppose that there exists an actiona: 11 2 g » o, € Aut(Z) of the connected component
I1%. of the Poincaré group, by automorphisms of 2, such that the triptet (2, o, {2, Ue
11}) possesses the following properties:

(i) The algebra X is generated by {Z,; Uell}; (1)

(ii) If U= Vthen %, <X,

(iii) For each Ue il and ge %, one has a,(2,)=2,);

(iv) If U, Vell are causally separated, then a linear map Fuv:Z,®,,X,>X
defined by F v (d®b)= db is an injective * homomorphism.

Here, &,,, denotes the algebraic tensor product. We shall now describe the rep-
resentatives for simple and composite measurement contexts. We assume that each
simple context is determined by a certain (non-trivial) commutative C* subalgebra of
2, which can be interpreted as the algebra of observables actualizable in this context.
We shall denote by T the family of all simple contexts and, for each U ell, by T, the
subfamily of T consisting of all simple contexts that can be realized in U.

We shall suppose that the following properties hold:

i) T=UveuTus (2)

{ii) For each Ue ll, the family T generates Z;;

(iii) If U< V, then T, < Ty

(iv) For each geIll and Uell, one has a (Ty) =T, ).

To introduce composite contexts, we consider certain subsets of T: by definition,
a composite context is a finite set A={A,, ..., A,}, where A; are simple contexts and
there are mutually causally separated sets U,,..., Upe Ul such that A;e Ty, . Let T
denote the family of all (simple and composite) contexts. The family T can be seen as
a subfamily of T (contexts of the form {A}).

For each context A={A,, ..., A}, we define its domain dom(A) to be the C*
subalgebra of Z generated by A,, ..., A.. According to condition (iv) of (1), the algebra
dom(A) is naturally isomorphic to A,;®...®A,. We denote by i :dom(A) =X the
canonical inclusion and by , the spectrum of dom{A). The space (), is naturally
homeomorphic to 0 4 x...x{},, .

The formula g(A)={a,(A,), ..., ag;(A:)} defines a natural action of the group TT!,
onTand T Itis easy to see that dom[g(A)] = e,[dom(A)], foreach ge 1! and A¢ 1.

In our exposition, the ‘quantum world’ will be represented by the quadruplet
(2, a,{2,, U}, T
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Definition 2.1. A local contextual extension of (X, o, {Z,; UcU},T) is a triplet
(3, ¢, {ta; AcT}) with properties:

(i) X' is a C* aigebra and ¢:2'> X is a * homomorphism;

(ii) The family {¢4; A €T} consists of * homomorphisms ¢,: A -2 such that i, =
dta. The algebra X' is generated by the family of subalgebras {e4(A); AeT}h

(iii) There exists an action a’:TI1 3g > e, e Aut(E') of I} by automorphisms of
5 such that @jia = t,(a)4ia, for each ge Tl and AT,

(iv) Foreach Uell,let £, denote the C* subalgebra of 2 generated by the family
of algebras {14(A); Ae Ty} Then, if U, Ve}l are causally disconnected, a linear map
FiviE®a, 2V » X' defined by Fi(d'®@b')=4a’b’' is an injective * homomorphism.

Remark. The properties (i) and (ii} say that the triplet (2', ¢, {14; AcT}) is a
contextual extension of (X, T), in the sense of [6].

In the following proposition we have collected the most important general properties
of local contextual extensions.

Proposition 2.1. Let (%', ¢, {ta; AcT}) be a local contextual extension of
2, o, (Zy; Uell}, T). Then

(1) The equality ajis = tya)@4i4 characterizes the action a';

(ii} The triplet (X', &', {£1;; U € 11}) satisfies conditions {1);

(iii) For each {A,,...,AJ=AcT there exists the unique * homomorphism
tq:dom{A)—>Z" which extends the maps ¢4, ,. .., t4, . This homomorphism is injective
and satisfies the equations @ ta™ tg a)a,0a and b, =iy}

(iv) The homomorphism ¢ :2’> % is surjective, For each U €1l one has ¢(Z},})=
%, For each g1} one has ¢a; = e .

Proof. (i) The equality agt, = ig.a,a,i4 determines the action ¢ on elements of the
set {1a(d); AcT,de A}. On the other hand, the algebra %' is generated by these
elements.

(ii) It is a consequence of the definition of the algebras £, of the monotonicity
of the carrespondence U - Ty, of the fact that the family {.4(A); Ac T} generates X',
of the Poincaré-covariance of this family and of property (iv) at (1) for maps Fi,y.

(iii) The formula 4(d,®...®@d)=14(d,)...¢a,(d;) defines, for each
{A,,....,Al=AecT, a * homomorphism :1:4,&...®A, =dom(A)>Z". This
homomorphism satisfies equations of (iii) in the above proposition. The second equality
implies injectivity of 4. The uniqueness is a consequence of the fact that dom(A) is
generated by A;, ..., A,

(iv) The surjectivity of ¢ as well as equations ¢ (T4 ) =2, are consequences of
the fact that an image of a C* homomorphism is closed [5] and of the fact that ¢(2;)
and ¢(Z") are dense in 2, and = respectively. The elements of the form d'=t,(d)
satisfy the equation a,¢(d’) = ¢a {a’). The set S of all elements of X’ satisfying this
equation is a C* subalgebra of Z'. On the other hand, S is dense in X". Thus, it coincides
with %', L]

A trivial exampie of a local contextual extension is the triplet (Z, id, {io; A€ T}). This
is the ‘smallest’ one. A non-trivial example is the ‘biggest’ extension, the construction
of which will now be given.
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Let Letx(Z,{2,; Uell}, T) be the C* algebra generated by the set of symbols
{(d, A); AcT, de A} and the following relations:

(1, A)=1

(4, A)(b, A) = (b, A)

a(d, A)+ B(b, A) = (ad + b, A) a,BeC (3)
(8, A)*=(a*%, A)

(4, A)(b, B)=(b, B)(4, A) if {4, BYeT.

It is easy to see that for each A<T, the correspondence d— (d, A} defines a =
homomorphism ¢,: A Letx(Z, {2 ; Ue U}, T). To simplify the notation, the algebra
Lesx(Z,{%; Ue U}, T} will also be denoted by Letx.

Proposition 2.2. Let Z' be a C":algebraﬁand {Aa; A€T} a family of * homomorphisms
Aa:A- X such that AL (@)As(b) = Ag(b)A.(8) whenever {A, B} e T. Then, there exists
one and only one * homomorphism A’: Letx > 2’ such that A'€,=A,, for each AcT.

Proof. The algebra Lctx is generated by the elements ,(4). This implies the uniqueness
of A’. The existence follows from the facts that A,(d} satisfy relations (3} and that
each C* algebra can be isometrically represented in some Hilbert space [5]. 0

There are two examples in which this proposition can be naturally applied.

Example 1. let 2'=3% and A4 = i4. Then, there exists the unique * homomorphism
¢ Letx = = such that qbr.A =4,

Example 2. Let 2'=C and, for each AT, let A,: A~ C be an arbitrary character
(non-trivia! muitiplicative linear * functional) of A. Proposition 2.2 implies that there
is the unique character A’: Letx » C such that A'é, = A,. Conversely, any character A’
on Lctx, by the same formula, determines characters A 4. Thus, the set of all characters
of Letx can be identified with the Cartesian product =[] 4.7, of all spectra £} ,.

The algebra Leex(E, {2, ; U € U1}, T) possesses a natural quasilocal structure, such that
conditions (1) are satisfied, For I/ € U, let Letx;; be a C* subalgebra of Lctx generated
by the elements {i,{d); AeTy}. It is clear that U< V implies Letxy, < Lefxy and that
the family {Letx,;; U< ll} generates Letx. If U, Ve ll are causally separated then the
elements of Lctx, commute with the elements of Lctxv Therefore, the map
Fuv: Letxy, &g Lotxy - Letx defined by Fuv(a®b)— b is a * homomorphism. To
show the injectivity of this map we apply proposition 2.2 to the following situation:
T'=Lctxy ®, Letxy, Aa=ia®1 for AeTy, Ay=I®7i, for AeTy and A, =f,1®1
otherwise, where f4 is an arbitrary character of A, The correspondmg map A': Letx >
Letx,, ®, Letxy satisfies the equation A’ FUV(a®b) =A{a)A (b) =4® b, Thus, Fuv is
invertible.

Finally, we introduce an action & of 1} on Letx. For g € TTL we define A = iy 4)a,0s.
According to proposition 2.2 there exists a unique * homomorphism &, : Letx > Letx
such that @,y = Aa = {ga)agia. It is easy to see that g &, is a representation of I1',
by automorphisms of Letx and that & (Letxy )} = Letxg .

Our analysis of the algebra Letx is summarized in the following,
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Proposition 2.3. (i) The triplet ( Letx, cfw\, {€4: A€ T}) is a local contextual extension of
(E’ a, {EU; UEH}, T);

(ii) If (X', ¢, {ea; A€T}) is a local contextual extension of (T, a,{Z,; Uell},T)
then there exists one and only one * homomorphism A': Letx - Z' such that A'0, =.,.
This map is surjective, and has the following properties:

é= o1
AlLeixy)=3Y, for each Uell
Nig=air for each geTIl. O

3. Local contextual hidden variables

The notion of a ‘local contextual hidden variable theory’ is a symbiosis of two ideas:
that of the local contextual refinement and of the lack-of-knowledge interpretation of
the quantum stochasticity. We shall now formulate two important properties that
characterize those local contextual extensions that are the base for an LHV theory.

Let (¥, ¢, {ta; AeT}) be a local contextual extension and let us denote by k(Z"
the minimal ideal in the algebra X’ which contains all commutators.

Property (i). Statistical interpretation of quantum states. For any state p on X and
finite subset F<T there exists a continuous linear functional pr on X' such that
pFlrzy=0 and prlea(d)] = p(d), for each context A= F and d € dom(A).

Comparing this with definition 3.1 of [6], such a formulation may seem strange
{we aiiow the F-dependence and we do noi require ihe positivity of funciionais p’).
However, this formulation still ensures the possibility of the statistical foundation of
quantum states, but in the framework of a ‘contextual’ statistics. This will be explained
in detail in section 4.

Property (i) implies that k(X')# %'. Equivalently, the set of characters of X' is
non-empty. Let us denote this set by (. The set {2, endowed with the *-weak topology,
becomes a compact topological space. The * homomorphism e: 2= C (1), introduced
by the formula e(4'){w) = w(d’), where C(£}) is the C* algebra of complex valued
continuous functions on ), is surjective and ker{e) =k(X'). The algebra C(Q) is
isometrically isomorphic to '/ k(Z").

From the point of view of hidden variables, the elements of the space () correspond
to complete (subquantum) states of the field (complete ﬁcld conﬁgurations) The
number w\a ") can be interpreted as the value of the variable &' € X' in the state w e {1

The elements of £} can also be characterized as states on X’ having the zeroth
dispersion on every element ¢4(&), where AcTand d"=de A

For each U ell, the characters of the algebra X}, can be interpreted as ‘portions’
of complete field configurations over UL

Property (ii). Extendibility of pairs of ‘portions” over causally separated regions. For

a 1-1 'l' lfa—u thaot camaratard A rh nair af sharantare @ on L and

e 1114l al\- ya.uaauy D‘-Pﬂlﬂ-l—‘ﬂ\l, auu \va\—ll pPall Vi vilalawvivis Rr] WL ke [ G

wy ON Ev, there exists at least one character w € () such that w|z;, =, and w

By = Wa.

Definition 3.1. The triplet (', &, {ta; A€ T}) is called a local hidden variables (LHV)
extension if it satisfies properties (i) and (ii).
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The following proposition establishes the existence of LHv extensions.
Proposition 3.1. The triplet (Letx, é,{f4; AT} is an Luv extension.

Proaf. The space Ny of all characters of Letx is isomorphic to the product [[acr Q4.
On the other hand, for each U € U, the space IT,y of characters of Lctx,; is isomorphic
to the product {]acr, Q4. If U, Vel are causally separated, then T, n Ty =, and
we conclude that Il; is of the form IT;yx Ty xIT". This implies property (ii).

To show that property (i) is fulfilled, we consider the maps {I:"A rdom(A) > C(II4)
AcT} defined by Fu(d)w)=#a(w)(4), where #4:Tly>Q, x... X Qs =0y is the
natural projection and A ={A,,..., Ac}. For each state p on 3 and a finite set F< T,
there exists a Hermitian continuous linear functional g- on C(II;) such that
A F4(d)] = p(&), for each context A< F and & edom{A). The functional p- on Letx
obtained as ‘pull back’ of g satisfies the conditions of property (i}. |

Let (X, ¢, {ta; AcT}) be an LHv extension. For each AeT, we define a map
F, :dom(A)- C{£) to be the composition F,=e.4.

Proposition 3.2. For each finite set {A',..., A*} of composite contexts, a relation
F.{d)+...+ F,«(a,) =0 implies the relation &, +...+d, =0. In particular,

(i) The maps F, are injective * homomorphisms;

(ii) If F4(4)= Fp(h), then 4= b,

Proof. Let F=A'uU...u AF and suppose that F o(d,)+. ..+ F 4(d,) = 0. This means
La(d)+. . oae(de) e k(T'). According to definition 3.1, for each state p on X there
exists a state p’' on £’ such that p[14(&)]=p(d;) and pTeo(d)+. ..+ 4 (G )]=0.
Therefore, p[a,+...+ a,]=0, for any state p on X. Thus, &,+...+4,=0. O

The following proposition shows that every LHv extension naturally gives rise to a
classical field theory. The proof is simple, and we omit it. For U e U let £}, be the set
of characters of %{; endowed with the *-weak topology. The space 2, is compact and
there exists a natural continuous map (restriction of characters) ry; : 0 > Q. According
to definition 3.1 (ii}, ry, are surjective.

Let us consider the net {Cy = C(2y); Uell} of commutative C* algebras. For
each Ucll, themap i,,: Cy =+ C(Q)), defined by i, ( f Y w) = f{ry(w)}, is an isometrical
embedding. For this reason, we can speak of C,, as certain subalgebras of C({}).

Proposition 3.3. (i) The family of algebras {Cy;; U € I} generates C(£2);

(ii) U< V implies Cy = Cy;

(iii) There exists one and only one action a" of 1!, by automorphisms of C(£)
with the property aze = ea,. For each Ue€ Ul we have o (Cy)=C,u);

(iv) For causally separated U, Vell, the map fuv: Cu®Cyv > C(£1) defined by
fuy{a®b) = ab is an injective * homomorphism. O

In other words, (Cy, a”, {Cy; U ll}} satisfies properties (1) of the algebraic field
theory. It is natural to interpret this field theory as a classical face of a field theory
based on (Z/, &', {Z1; U ell}) because it is obtained by ‘forgetting’ the non-commuta-
tivity of X'
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On the other hand, the quantum theory based on (£, a, {Z,; U € ll}) is obtained
by ‘forgetting’ contextuality. Therefore, the triplet (2, «', {£%; U €ll}) can be con-
sidered as a common refinement for the quantum field theory and for the corresponding
classical theory.

According to proposition 3.2, each simple context AT is isomorphic to F,(A).
Let T denote the collection of algebras {F,(A); AT} and for each Uell let T =
[FA(A); AeTy). Itis easy to see that the families T® and {T%; U e 11} satisfy properties
(2).

Proposition 3.4. The algebra Letx(C(Q), {Cy; Uell}, T*) is naturally isomorphic to
Leex(Z {2, Uell}, T

Proof. Tt is sufficient to prove that the correspondence A - F4{A) induces bijections
T T%and Ty, < TP, Let us suppose that F4(A) = F(B) for some A, BeT. This means
that for each d< A there ex1sts a be B such that FA(a)FFB(b) and vice versa.
Proposition 3.2 implies d = b and we conclude that A= B. ]

4. Generalized concept of probability and LHv extensions

4.1. Contextual event spaces

In this subsection we shall present, independently of LAV extensions, a ‘contextual’
generalization of classical probability theory, free of problems with Bell’s inequalities.
In the next subsection we shall relate this contextual statistics with LHV extensions.

Let K be a simplicial complex and let us suppose that for each point pe X’ a set
Q, with a o-field B, of its subsets is given. For each simplex {p,,...,p.} =S e K let
us define a set Os=0, x...xQ, with a o-field Bs=B, x...XB, (the o-field
generated by products of sets from B, ).

Definition 4.1. A contextual event space of the type {Qg; S € K} is a pair (), {ms; S€K})
whera D is 3 set aud {“S S‘_K} it a {-n"ect:On of s fjprtnrp maps ”SZQ_:.'QS Such

that ws(w)=(m, (w),..., 7, (w)), for each w € and S={p,,..., p.}eK.

Let (Q, {ms; S€K}} be a contextual event space. For each SeK, let us introduce a
family Ps = w35'(Bs) of subsets of 2. Clearly, Py is a o-field on (} isomorphic to Bs.
Fmally, let P={_sex Ps and let P be a o-field generated by P.

PRy R SRR S An ramece frem o snceihla fenntavinal’ intarmreta

l Mne Mmouvanioii 101 auu: a uc:uuuuu LUINGS 1ivil a puaaiunb Coniéiiua: nciploa-
tion. The points p ¢ K® correspond to simple experimental arrangements (simple contexts),
the other simplexes S € K correspond to composite contexts, the points w € () correspond
to elementary events, the elements of P are events that can be actualized in the context
S and finally, the elements of P are actualizable events.

s [ o (74l P

Definition 4.2. A probability measure on ({1, {ms; SeK}) is a
the following properties:

(i) w(2)=1;

(ii) For each finite subset F < K° there exists a real-valued measure pr on P such
that pur(A)=u(A), for each simplex S< F and each AePs.

a map H‘,:P—‘,{ﬂ, 1] with
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An immediate consequence of this definition is that restriction of u to each Py gives
an ordinary probability measure.

For given contextual event spaces {({};, {m%; SeK}); i=1,...,k} of the types
{Q%; S €K} respectively, we can naturally define their product. To do this, let us consider
the set 2* =0, x...xQ, and maps 7¥=m5x... X wE: Q¥ >Q5x. .. x Q% It is easy
to see that (%, {#%; SeK}) is a contextual event space of the type {Qsx...xQ%; Se
K}. Now, let

Ps~(ms) ' (B%) P'=JP; Pi=m;'(Byx...x B}) P*=J P
SeK i=]

WeAQenoteAthe o-fields on €; and Q*, that are generated by P' and P* respectively,

by P' and P*. The following proposition is a direct consequence of our definitions.

Proposition 4.1. (i) PE=PLx...xP% for each SeK;

(i) P*< P'x...xP*;

(iii} If p; are probability measures on ({;,{7s; S€K}) respectively, then there
exists a unique probability measure pu* =g, X... X u; on {(Q*, {7%; S€K}) such that

pHA XA =0 (Ay) L Ag)
for each SeK and A; e PL. O

For our discussion, it is very important to considerthecase O, =...=Q and u,=...=
1 = . This corresponds to the situations in which the initial experiments are repeated
k-times. The following proposition then establishes a ‘contextual version’ of Bernoulli’s
law of large numbers. The proof can be easily reduced to the proof of the ordinary
Bernoulli law. For w*ef)* and AeP, let ri(w®*) denote the relative frequency of
occurrence A in w®.

Proposition 4.2. For each AcP and £>0, let A¥< OQ* be the set of all *cQ* in
which |ry(@™)—u(A)|= e Then

(i) A,eP*

(i) m*(A%)=<1/(dke?). O

The fact that the law of large numbers holds implies {(just as in the classical case) the
possibility of empirical foundation of these statistics, All prababilities are interpretable
in terms of relative frequencies of occurrence.

4.2, Statistics of LHv extensions

We now go back to the guantum field theory. The collection T of all simple contexts
has a natural structure of a simplicial complex: simplexes are just elements of the
family T. For each Ae T let B, denate the Baire o-field of ().

Let (Z', ¢, {ta; AcT}) be an Luv extension and )} the space of characters of X',
For each context AeT let 7,:Q - Q4 denote the map defined by 7m4(w)=ewi,. This
map is obtained by transposing the homomorphism F,:dom{A) - C({}). Proposition
3.2(i) implies that w4 is continuous and surjective. In terms of the identification
R4=0,4 %...xQ,,,theequality Talw) = (malw), ..., ma,{w)) holds. Consequently:

Proposition 4.3. The pair (), {74, AeT}) is a contextual event space of the type
{4, AcTh 8]
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For each AcT, letP, = w2 (B,) and P=|_J 4.4 P.. It is instructive to think about the
elements of P as of quantally interpretable subquantum events. The elements of P,
correspond to events that can be actualized in the context A,

Proposition 4.4. For each geTll and A< T one has
d'(g)(PA)=Pyia.

In particular, P is Poincaré-invariant. Here, d’ is the induced action of I1%. on Q.

Proof. Definition 2.1 implies agta =tz a)a,i, for each AeT and gelll. At the level
of the spaces of characters, this equality has the following form:

ng}d'(g) =di(g)7a (4)

where da(g): a4~ Qg4 is a homeomorphism defined by da(g)(w) = way'iya,. The
statement of the proposition is a direct consequence of this equality and of the definition
of P. O

Now we shall see that any quantum state p (a state on X) determines canonically a
probability measure ., on (2, {ma; A€ T}). Foreach AeT,let u, 4 denote the probabil-
ity measure on (Q,, B,) induced by the state pi,.

Proposition 4.5. For each quantum state p there exists one and only one probability
measure u,: P[0, 1]on (, {ms; A€T}) such that u,(A) = p, a(wa(A)) foreach AeT
and AcP,.

Proof. 1t is clear that the measure ., is, if it exists, unique. Let us show its existence,
According to condition (i) of definition 3.1, for each finite set F< T and each state p
on X there exists a continuous linear functional g on C(f) such that g(F.(d)) = p(d)
for each A< F and 4 ¢ dom(A). The functional g induces [14] a real-valued measure
v on the Borel o-field B({}). For AeP,, this measure satisfies the equality »(A) =
i, a{ma(A)). In particular, if

AcP, nP, then o ama(A)) =, a,(ma,(A)).
Consequently, for Ae P4, the formula u,(A) = u, 4( ma{A)) consistently defines a map
i, 1 P—[0, 1] with the desired properties. |

It is natural to interpret the elements of the family P as subquantum events that possess
a quantum meaning. Accordingly, there should exist a natural map (‘quantum inter-
preter’):

{elements of P} > {quantum events}

compatible with the statistical averages. Our next proposition establishes the existence,
uniqueness and the main properties of such an entity. Let D be a faithful representation
of £ in a Hilbert space H. The quantum events (corresponding to D) can then be
identified with the projectors in the bicommutant D({Z)".

Proposition 4.6. (i) There exists one and only one projector valued map ¢, : P~ P(H)
such that w,(A)=Tr(c,(A)p) for each state p induced by a statistical operator 5 in
H and each AP,
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(ii) For each Ae'i', let capn: By—> P(H) denote the spectral measure of the rep-
resentation Di, of dom(A} in H. Then cp{A)=c,p(ma(A)), for each A€P,. In
particular, a restriction of ¢;, to P4 gives a projector valued measure;

(iii} The image of the map cy, is contained in the bicommutant of D(Z) in H;

(iv) Let A,,..., A, be mutually disjoint elements of Pand 2 =A,u...UAy. Then
cp(Ay), ..., cp(Ay) are mutually orthogonal projectors and cp{A)+...+cp(Ag) =

In partl(‘ ].'—ll‘ the restriction of ¢ to anv finite Roolean cnhalnnhra nf P is a projecto

222 al, L2 ColllAlL < W QG y Llidy DVVLLGL SuWaigvviad v a privjueat’
L) p

"t

valued measure.

Proof. For A € P4 wedefine cp{A) tobe equal to ¢, p{ mi(A)). Anecessary and sufficient
condition for the existence of a global map ¢, : P> P(H) is that ¢, p(m4(A)) does not
depend on A. Let Ac P, nP,, and F= A, U A,. According to the same reasoning as
in the previous proof, there exists, for each statistical operator 5 in H, a real-valued
measure ¥ on B(f)) such that v(A)=Tr[fca n(ma(A))] for each context A< F and
AeP, Especially,

Tr[ﬁCAI,D(TrAl(A))] = Tr[ﬁcAz,D(WAI(A))]

which implies the equality ¢4, p(7a,(A)}) = c4, p{ma,(A))

Let us now suppose that another map cp:P- P(H) satisfying the equation
Tr(peh(A)) = 1, {A) is given. Then Tr{5{cp(A) — ¢b(A})) =0, for each AcP and each
statistical operator g in H. Thus, ¢p(A) = ch(A).

The fact that the image of the map ¢, is contained in the bicommutant of D(Z)
is a consequence of the fact that the image of each spectral measure ¢, ; is contained
[14] in the bicommutant of D[ dom({A)].

Finally, let Ay,..., A, €P form a decomposition of {). Then for each statistical
operator g in H there exists a normed real-valued measure » on B{{}) such that
v(A) =Tripen(Ad)), i€{l,...,k}. Summing over all i and taking into account the
arbitrariness of p we obtain an equality cp(A,)+...+¢x(A )= L On the other hand,
if a sum of projectors is equal to unity then they are mutually orthogonal. O

In this proposition, we have not assumed that the representation D is Poincaré-
covariant. IT this 1s the case, then the ‘quantum interpreter’ ¢y, is also Poincaré-covariant,

More precisely, let us suppose that a unitary representation A: Ml-U (H) of the
universal covering fi, of M1 is given, such that D{a g(a)) A(Z)YD(d)A($)" for each
gelll and 4¢ 3. Here, gel‘[T is the projected g eIl

Proposition 4.7. For A€P and gelll, the following equality holds:
cpld’ (YA =A()ep(A)A(E)".
Proof. ltis easy to see that ¢, ay, p[da(2)($)]1= A(g) ca p(S)A(E )", foreachAeT SeB,

and grel'[T Together with the equality (4) and property (ii) of proposition 4.6, we
obtain the desired equality. O

5. Concluding remarks

.

In this study we have shown that algebraic quantum field theory can be interpreted
as a coarse-grained face of a local and causal subquantum theory so that, from the
point of view of this finer theory, the whole quantum stochasticity is explained via the
lack-of-knowledge scheme.
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It is instructive to compare the presented subquantum theory with Rédei’s study
{18], according to which algebraic quantum field theory does not admit any ‘local
hidden variables’ refinement.

For an appropriate quasilocal structure (Z, {Z,; U € 11}), representing the ‘quantum
world’, Rédei introduces a notion of local hidden theory, which consists of another
quasilocal structure (£',{2,; U €ll}) and a unital positive linear map L:X'> 2 such
that, besides appropriate locality and covariance conditions for L, each quantum state
p is realizable as a probabiiity measure g, on the state space S(Z') of X' in the sense
that

p(L(b)) = Lm w(B) dy, () (5)

for each be X'

The map L is a counterpart for the ‘forgetting homomorphism’ ¢ in the presented
approach of LHv extensions.

In decomposition (5) it is also assumed that the dispersion of binw is, for each
w € supp(y, ), less than the dispersion of L(B)in p (see [18] for details). Here, Supp(y.p)
is the support of u,.

The restriction to causal theories, which we are interested in, is equivalent to

supp(p,) <

for each p. Here, (1 is the space of characters (dispersion-free states} of X',
Relation (5) now becomes

o8B = [ w(B) du(w). (6)
0

However, compared with property (i} in definition 3.1, condition (6} is much
stronger. First of all, there is no physical reason for (6} to be valid for all b, because
it may happen that some b are not accessible through any quantum measurement.
From the point of view of contextual extensions, only elements of the form b= wald),
where Ac T and 4 € dom(A), should figure in (6).

Secondly, even if we require (6) to hold only for 4(d)’s, the Bell inequalities
obstruction still remains. This is a direct consequence of the results of Summers and
Werner already mentioned, and the fact that u, in (6) is a classical (Kolmegorovian)
probability measure.

On the other hand, the concept of contextual statistics, incorporated in the approach
of LuV extensions, allows us to overcome the difficulties with Bell's inequalities.

Of course, contextual statistics is not the only way of overcoming the obstruction
of the Bell inequalities. For example, statistics based on o-classes [10,11] or on
amplitude densities [12] also have this property.

However, disregarding technical details, any other statistics should contain the
contextual statistics as its part. This is so because the domain of the contextual statistics
is exactly the family of quantally actualizable events. On the other hand, any satisfactory
statistical description should include these events.

To conclude, let us relate the approach of LHv extensions, and Bell's ‘beable
quantum field theory’ [4].

If (S, ¢, {ta; AcT}) is an LHV extension, then the elements of the form {ta(d); A€
T,4=3d" e A} are interpretable as ‘elementary beables’ of the theory, because they
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possess a direct physical meaning (as quantum observables viewed through simple
measurement contexts), and definite values in each subguantum state w & (.

Other Hermitian elements of ' are of the ‘beable type’, too. This is so because
‘elementary beables’ generate the whole X' (see definition 2.1, property (ii)), and
because a state p’ on X', dispersion-free on elementary beables is dispersion-free on
the whole X' (that is, p'€ Q).

In this sense the theory based on Luv extensions is a special case of the beables
quantum field theory of Bell, because all variables are —beables.
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