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Abstract. I t  isshawn thatquantumfieldtheoryadmitsat least one local andcausal extension 
which gives the same statistical predictions. A general algebraic formalism for the study 
of such extensions is presented. Quantum field theory and the corresponding extensions 
are considered in the framework of the Haag-Kastler approach. Obstruction due to the 
Bell inequalities is overcome by the use of a generalized probability theory. 

1. Introduction 

The aim of this paper is to present a general algebraic formalism for the study of 
causal and local field theories that are compatible at the statistical level with quantum 
field theory. 

The paper is a logical continuation of an earlier study [6] where an algebraic 
formalism for contextual hidden variables, based on classical statistics, was presented. 

In the present paper, we shall deal with local hidden variables within the algebraic 
quantum field theory scheme. 

The following are the most important relations between [6] and the present study. 
(if Contextuality and local coniextuali(y. As in [6], we deal here with contextual 

hidden variables. Let us recall that contextuality allows us to overcome obstructions 
which are implied by the classical works of von Neumann 1151, Gledson [9], Bell [2] 
and others (see [3]). The obstructions mentioned are directly related to the problem 
of a consistent definition of subquantum states. 

In a contextual hidden variable theory the value of a given quantum observable in 
a given subquantum state also depends on the measurement confext [19]. Following 
[6], we shall interpret the contextuality as a consequence of inadequacy of the algebra 
of quantum observables for the complete description of physical reality. 

However, in this paper we are interested in local theories only. This means that 
only a specific form of contextuality, the local contextualify, is admissible. The local 
contextuality forbids any correlation between results of quantum measurements per- 
formed in mutually causally (space-like) separated regions of space-time. 

(ii) Classical and non-classical probabiliiy concepts. In any local and causal theory, 
classical (=Kolmogorovian) probability distributions satisfy Bell's inequalities [ I ] .  On 
the other hand, Bell's inequalities are violated in quantum mechanics. Therefore, each 
hidden variable theory based on classical statistics and statistically compatible with 
quantum mechanics must be non-local. 
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However, the situation changes essentially if we generalize the concept of probabil- 
ity. In the framework of a (suitable) generalized statistics a unification of quantum 
mechanics, locality and causality becomes possible [7, 10-12, 16,171. Having this in 
mind one can justify the point of view according to which Bell’s inequalities are not 
directly connected with locality, but rather with the type of statistics allowed. In implicit 
form, this statement is contained in Fine’s theorem [8] too. 

So far with quantum mechanics. A similar situation appears in algebraic quantum 
field theory as well. According to the work of Summers and Werner [20-221 Bell’s 
inequalities are violated in this theory. In particular, Bell’s inequalities are maximally 
violated in both Bose and Fermi free field theories in the vacuum state [21]. 

Consequently, the use of some kind of non-classical statistics in local causal 
refinements of algebraic quantum field theory (if such structures exist) is unavoidable. 

In contrast to [6], the present paper is based on a ‘contextual’ modification of 
classical statistics. The paper is organized as follows. In section 2 we first describe the 
quantum structure. This includes basic axioms of quantum field theory as well as a 
representation for the measurement contexts. Quantum field theory will be treated in 
the framework of the algebraic approach of Haag and Kastler [13]. 

Concerning contexts, we shall distinguish two types: simple and composite. By 
definition, a simple context corresponds to a single (irreducible) measurement situation. 
On the other hand, composite contexts correspond to compositions of single measure- 
ments performed in causally separated regions of the spacetime. 

Our next step is to formalize, in the framework of the Haag-Kastler approach, the 
idea of local contextual refinements. This will be done with the notion oflocal contextual 
extension. We then construct, starting from the quantum structure, an important C* 
algebra, denoted by Lctx, and a local contextual extension which naturally corresponds 
to this algebra. We also show that the ’universality’ of the algebra Lctx, with respect 
to an arbitrary local contextual extension, holds. 

For our discussion, the most interesting local contextual extensions are those in 
which the statistics in the quantum states are interpretable as lack of knowledge about 
‘complete states’. Structures of this kind are investigated in section 3. The precise 
formulation leads to the notion of local hidden variable (LHV) extension. We establish 
the possibility LHVS by showing that the extension associated with the algebra Lctx is 
an LHV extension. We then analyse the most important general properties of LHV 

extensions. For a given LHV extension we introduce the concept of the complete 
(subquantum) state, of the subquantum space and of the ‘classical’ projection of the 
complete theory. 

The mentioned modification of classical statistics, which is necessary to overcome 
the obstruction by Bell’s inequalities, is contained only implicitly in the notion of an 
LHV extension. The analysis of the statistics of LHV extensions is the topic of section 
4. We shall first introduce a general concept of ‘contextual event space’ and of a 
probability measure on it. We formulate an analogue of the weak law of large numbers 
for this ‘contextual statistics’, which ensures the possibility of relative-frequencies 
interpretation of probabilities. We then show that the subquantum space Cl of a given 
L H V  extension naturally has the structure of a contextual event space and that each 
quantum state gives rise to a probability measure on it. The correspondence 

{states on .X.)+{probability measures on Cl)  

then allows us to interpret quantum stochasticity as a consequence of a lack of 
knowledge about hidden variables w E Cl. 
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Finally, we show that any representation D of the algebra X of quantum observables 
in a Hilbert space H naturally determines a ‘projector valued measure’ cD on the 
subquantum space n. This entity contains all the information about the lack-of- 
knowledge interpretation of the quantum states in H. It can be considered as a ‘quantum 
interpreter’ of ‘quantally actualizable’ subquantum events. 

In this paper, we shall deal with C* algebras with unity and with unity-preserving 
homomorphisms. An ideal means a closed two-sided ideal. 

2. Local contextual extensions 

We start our analysis with a description of the quantum structure. Let U be the family 
of all double cones in the Minkowski space-time M4. 

The principal entity of the ‘quantum world’, the C* algebra of all quantum 
observables, will be denoted by E. We shall suppose that each U E U gives rise to a 
C* subalgebra X u  of X, consisting of all observables ‘localized’ in U. We shall also 
suppose that there exists an action a: II! 3 g + ag E Aut@) of the connected component 
IIL of the Poincar6 group, by automorphisms of X, such that the triplet (1, a, {Xu; U E 
U}) possesses the following properties: 

(1) (i) The algebra X is generated by {Xu; U E  U}; 
(ii) If U ~ V t h e n X ~ c X : , ;  
(iii) For each U E U and g E IIS, one has ag(X,,) = Zlg(,,); 
(iv) If U, V E U  are causally separated, then a linear map F u v : X u @ a , g Z v + X  

defined by Fu,(a*Ob^) = a*6 is an injective * homomorphism. 
Here, @.,, denotes the algebraic tensor product. We shall now describe the rep- 

resentatives for simple and composite measurement contexts. We assume that each 
simple context is determined by a certain (non-trivial) commutative C* subalgebra of 
E, which can be interpreted as the algebra of observables actualizable in this context, 
We shall denote by T the family of all simple contexts and, for each U E U, by Tu the 
subfamily of T consisting of all simple contexts that can be realized in U. 

We shall suppose that the following properties hold: 

(ii) For each U E U, the family Tu generates X u ;  
(iii) If U G V, then TU c TV; 
(iv) For each g E I I l  and U E U ,  one has ap(TU)=TR(U,. 
To introduce composite contexts, we consider certain subsets of T by definition, 

a composite context is a finite set A = {A,,  . . . , Ak}, where Ai are simple contexts and 
there are mutually causally separated sets U,, . . . , Uk E U such that Ai E Tu,, Let ? 
denote the family of all (simple and composite) contexts. The family T can be seen as 
a subfamily o f f  (contexts of the form {A}). 

For each context A ={A,, . . . , AA}, we define its domain dom(A) to be the C* 
subalgebra of X generated by A , ,  . . . , Ax. According to condition (iv) of ( l ) ,  the algebra 
dom(A) is naturally isomorphic to A,@. . .@Ax. We denote by iA:dom(A)+X the 
canonical inclusion and by fl, the spectrum of dom(A). The space a, is naturally 
homeomorphic to a,, x . . . x Cl,, . 

The formula g(A) ={a,(A,), . . . , a,(A,)} defines a natural action of the group IIS 
on T and ?. It is easy to see that dom[g(A)] = a,[dom(A)], for each g E II! and A E ?. 

In our exposition, the ‘quantum world’ will be represented by the quadruplet 
(La,{Xu;  UEU),T) .  

6 )  T=UUeLITU; (2) 
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Definition 2.1. A local contextual extension of (E, a , { Z u ;  U E U } , T )  is a triplet 
(2, + , { t A ;  A E T ) )  with properties: 

(i) E’ is a C* algebra and + : X‘+ Z is a * homomorphism; 
(ii) The family ( t A ;  A E T }  consists of * homomorphisms i A : A + 2  such that iA = 

+la. The algebra Z’ is generated by the family of subalgebras {ta(A); A E T ) ;  
(iii) There exists an action a ’ : I I ! 3 g + a b ~  Aut(E’) of II! by automorphisms of 

Z’such that m ; t A =  tg (ApgiA,  for each geI I !  and AET;  
(iv) For each U E U, let E; denote the C* subalgebra of E’ generated by the family 

of algebras {tA(A); ACT,}. Then, if U, V E  U are causally disconnected, a linear map 
F;y:E;@algXL+I‘ defined by F;,(a^’@b^’)= a^’$ is an injective * homomorphism. 

Remark. The properties (i) and (ii) say that the triplet (E’, + , { L ~ ;  A C T } )  is a 
contextual extension of (Z,T), in the sense of [ 6 ] .  

In the following proposition we have collected the most important general properties 
of local contextual extensions. 

Proposition 21. Let (X’, +, [ tA ;  A E T } )  be a local contextual extension of 
(Z,a,{E,; UEU),T) .  Then 

(i) The equality ip(ApgiA characterizes the action a’; 
(ii) The triplet (E’, a‘,{Eb; UEU}) satisfies conditions (1); 
(iii) For each [A, ,  . . . , A,) = A E? there exists the unique * homomorphism 

t A :  dom(A) + E’ which extends the maps t A , ,  . . . , iAk . This homomorphism is injective 
and satisfies the equations abtA = i g ( A p g i A  and +tA = iA; 

(iv) The homomorphism +:E’+E is surjective. For each U E  U one has +(Zk) = 
E,. For each g E IIi one has +ab = a&. 

Proox (i) The equality abta = ipca,a,iA determines the action a’ on elements of the 
set { tA(a^);  A E T ,  ; E A } .  On the other hand, the algebra E’ is generated by these 
elements. 

(ii) It is a consequence of the definition of the algebras Eh, of the monotonicity 
of the correspondence U+T,, of the fact that the family {tA(A); A E T }  generates Z’, 
of the Poincart-covariance of this family and of property (iv) at (1) for maps F L Y .  

(iii) The form$a in(&,@.. .@&)= ~ ~ ~ ( 6 , ) .  . . tAk(&,)  defines, for each 
{A, ,  . . . , A,) = A ET,  a * homomorphism iA : A,@. , . @ A ,  = dom(A) + E’. This 
homomorphism satisfies equations of (iii) in the above proposition. The second equality 
implies injectivity of The uniqueness is a consequence of the fact that dom(A) is 
generated by A , ,  . . . ,Ak.  

(iv) The surjectivity of 6 as well as equations 4(Z;) = X u  are consequences of 
the fact that an image of a C* homomorphism is closed [ 5 ]  and of the fact that + (XL)  
and +(E’) are dense in E, and Z respectively. The elements of the form a^’= t,,(a^) 

satisfy the equation a&(a^’) = +a;(&’). The set S of all elements of E’ satisfying this 
equation is a C* subalgebra of Z’. On the other hand, S is dense in X’. Thus, it coincides 
with Z’, 0 

A trivial example of a local contextual extension is the triplet (Z, id,{iA; AET) ) .  This 
is the ‘smallest’ one. A non-trivial example is the ‘biggest’ extension, the construction 
of which will now be given. 
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Let Lctx(X,(X,; U E  U},T)  be the C* algebra generated by the set of symbols 
( (a^,  A); A ET, ; E A }  and the following relations: 

( I , A ) = l  

(6, A) (&  A)  = (66, A )  

a(;, A ) + P ( ~ , A )  =(&+p6 ,  A)  0 , P E C  (3) 

(6, A)* = (a^*,  A) 

( i ? , A ) ( g , B ) = ( g , B ) ( i , A )  if {A, B } E ~ .  

It is easy to see that for each A ET, the correspondence â  + (6, A)  defines a * 
homomorphism CA: A + Lcfx(Z, {Xu ; U E U}, T ) .  To simplify the notation, the algebra 
Lcfx(X, {Xu ; U E U}, T )  will also be denoted by Lcfx. 

Proposition 22. Let X' be a C* algebra and { A A ;  A E T }  a family of * homomorphisms 
AA:A+X'such that AA(6)AB(6) =AB(b^)AA(d)  whenever (A, B } E ? .  Then, there exists 
one and only one * homomorphism A': Lcfx + X' such that A T A  = A A ,  for each A ET. 

Roo$ The algebra Lcfx is generated by the elements ;.,(a )̂. This implies the uniqueness 
of A'. The existence follows from the facts that A A ( ; )  satisfy relations (3 )  and that 

0 each C* algebra can be isometrically represented in some Hilbert space [ 5 ] .  

There are two examples in which this proposition can be naturally applied. 

example 1 .  Let z'= ZAand A A  = iA. Then, there exists the unique * homomorphism 
+ : L c f x + X  such that @LA=iA.  

Example 2. Let X'= C and, for each A E T ,  let AA:A+ C be an arbitrary character 
(non-trivial multiplicative linear * functional) of A. Proposition 2.2 implies that there 
is the unique character A':  Lcfx+ C such that A n t A  = AA.  Conversely, any character A '  
on Lcfx, by the same formula, determines characters AA. Thus, the set of all characters 
of Lcfx can be identified with the Cartesian product IIl=nA,,n, of all spectra a,. 

The algebra Lctx(X, (Xu ; U E U}, T )  possesses a natural quasilocal structure, such that 
conditions (1) are satisfied. For U E U, let Lcfx, be a C* subalgebra of Lctx generated 
by the elements { tA(6);  ACT,}.  It is clear that U G  V implies Lcfx, c Lcfx, and that 
the family (Lcfx,;  U E  U} generates Lcfx. If U, V E  U are causally separated then the 
elements of L a x ,  commute with the elements- of f .cfxv.  Therefore, the map 
F,,, : Lcfx, O,,, Lcfx, + Lcfx defined by F,,(i?O b )  = 6b is a * homomorphism. To 
show the injectivity of this map we apply proposition 2.2 to the following situation: 
X'=Lcfx ,O ,Lcfx , ,  AA=tAOI for ACT,,  AA=lOIA for AET,  and AA=fAIOl 
otherwise, where fA is an arbitrary character of A; The correseonding p a p  A ' :  Lctx + 
Lcfx, 0, L a x ,  satisfies the equation A'F, , (6@ b )  = A'(a^)A'(b) = a^@ b. Thus, F,," is 
invertible. 

Finally, we introduce an action a* of II! on Lcfx. For g E II! we define A A  = tzcA,usiA. 
According to proposition 2.2 there exists a unique * homomorphism &# : Lcfx +,Lcfx 
such that = A A  = tZ,,,,a,iA. It is easy to see that g + a*g is a representation of IIl 
by automorphisms of Lcfx and that &8(Lcixu) = Lcfx,(.,. 

1. 

Our analysis of the algebra Lcfx is summarized in the following. 
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Proposition 2.3. (i) The triplet (Lctx, 4, {CA;  AET)) is a local contextual extension of 
( L f f , { I u ;  UEU1,T); 

(ii) If (2, +,tiA; AfT}) is a local contextual extension of ( X , a , { X u ;  UEU},T) 
then there exists one and only one * homomorphism A ' :  Lctx+E'such that A'CA = 
This map is surjective, and has the following properties: 

4 = + A <  

A'(Lctx,) =Xk for each U E U 

A'&, = ubA' for each g E II?+ 0 

3. Local contextual hidden variables 

The notion of a 'local contextual hidden variable theory' is a symbiosis of two ideas: 
that of the local contextual refinement and of the lack-of-knowledge interpretation of 
the quantum stochasticity. We shall now formulate two important properties that 
characterize those local contextual extensions that are the base for an LHV theory. 

Let (2, @, { la;  A E i j j  be a local contextual extension and let us denote by k(Y) 
the minimal ideal in the algebra X' which contains all commutators. 

Property ( i ) .  Statistical interpretation of quantum states. For any state p on X and 
finite subset F s T  there exists a continuous linear functional p ;  on Z' such that 
p;Ik(z. ,=O and p ; [ ~ ~ ( 6 ) ] = p ( i ) ,  for each context A c F  and n^~dom(A). 

Comparing this with definition 3.1 of [ 6 ] ,  such a formulation may seem strange 
(we aiiow the F-dependence and we do  not require the positivity of functionais p k j ,  
However, this formulation still ensures the possibility of the statistical foundation of 
quantum states, but in the framework of a 'contextual' statistics. This will be explained 
in detail in section 4. 

Property (i) implies that k(X')#Z' .  Equivalently, the set of characters of X' is 
non-empty. Let us denote this set by 0. The set R, endowed with the *-weak topology, 
"CUJLIICS a cumpaL-r rupuluglcar spac-c. LLLC - rlurllurllulprlrslll c ;* - L (*'I, LLLLruuuGc" 
by the formula e ( 6 ' ) ( w ) = w ( i ' ) ,  where C(R) is the C* algebra of complex valued 
continuous functions on 0, is surjective and ker(e)=k(Z'). The algebra C ( 0 )  is 
isometrically isomorphic to X ' j  k(X'). 

From the point of view of hidden variables, the elements of the space 0 correspond 
to complete (subquantum) states of the field (complete field configurations). The 
IIuIIIucr W ( U  I La,, uc IIILCrpI~LCu ab LLlC VdlUC U, 

The elements of 0 can also be characterized as states on X' having the zeroth 
dispersion on every element ~ ~ ( n ^ ) ,  where A E T  and a^+= $ E A .  

For each U E U, the characters of the algebra XL can he interpreted as 'portions' 
of complete field configurations over U. 

Property ( i i ) .  Extendibility of pairs of 'portions' ouer causally separated regions. For 

w2 on X;, there exists at least one character w E 0 such that wiz; = 0,  and ~ 1 x 6  = w2. 

L...~...~ ~ 1 ~ ~ 1 . - ,  .mL. . .... ~.L:.- ~ . r l  . ,-I,.\ :-*.->~~..> 

L^. , * I \  --- L^ :_...-..A.> ^ ^  .L^ -C .L -  ..--:..I.,- cr -vr  :.. .L^ ^.^I^ . . -n  
LLlC "dll*"LC " C A  111 L U G  > L ' l K  w CA'. 

anah 1 ,  I l r l l  th-t o r a  c "..-" 11.. ee--rotnr( "-A enrh n ~ i r  nf ehQsar-+nm I., nn TI.. 2-A  
*LLLII ", . c M ,,I',. aLlr k"U"',L"J " c p a . L L L * Y ,  ',,,U L',C.I pa.. "1 . , . . .V .U I . *L I  - 1  u.. 'U I..- 

Definition 3.1. The triplet (Z', + , { L ~ ; A E T } )  is called a local hidden variables (LHV) 

extension if it satisfies properties (i) and (ii). 
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The following proposition establishes the existence of LHV extensions. 

Proposition 3.1. The triplet (Lctx, 6, { C A ;  A ET}) is an LHV extension 

Pro05 The space II, of all characters of Lctx is isomorphic to the product n A E T n ~ .  
On the other hand, for each U E  U, the space of characters of Lctx, is isomorphic 
to the product n,,,, a,. If U, V E  U are causally separated, then Tu n T v  = 0, and 
we conclude that II, is of the form IIU,,xII,xII’. This impliesproperty (ii). 

To show that property (i) is fulfilled, we consider the maps {FA:  dom(A) + C(IIT); 
A E ? }  defined by kA(a^)(w)=7;A(w)(a^),  where GA:I’IT+nA,x...xnA,=nA is the 
natural projection and A = {A,, . . . , Ak}. For each state p on Z and a finite set F c T, 
there exists a Hermitian continuous linear functional pF on C(II,) such that 
pF[pA(a^)] = p ( a ^ ) ,  for each context A e F and a  ̂E dom(A). The functional p; on Lctx 

0 

Let (Z’,+,{iA;A€?}) be an LHV extension. For each AE?, we define a map 
FA : dom(A) + C(n) to be the composition FA = elA. 

Proposition 3.2. For each finite set {A‘, . . . , A,} of composite contexts, a relation 
F,,(a^,)+ ...+ F,x(a^~)=O implies the relation a^,+...+ a ,̂= 0. In particular, 

obtained as ‘pull back‘ of pF satisfies the conditions of property (i). 

(i) The maps FA a‘,e injective *homomorphisms; 
(ii) If FA(&) = F,(b), then 2 = b. 

Proof: Let F = A ’ u  ... u A k  and suppose that F,l(a^,)+ ...+ F,*(a^,)=O.Thismeans 
i A a ( a ^ , ) + .  . . + i A k ( i k ) e  k(X‘) .  According to definition 3.1, for each state p on Z there 
exists a state p ’  on X‘ such that p ’ [ ~ ~ ( a ^ ~ ) ] = p ( a ^ ~ )  and p ’ [ ~ ~ i ( a ^ ~ ) + . .  .+iA*(a^,)]=0. 

U 

The following proposition shows that every LHV extension naturally gives rise to a 
classical field theory. The proof is simple, and we omit it. For U E U let nu be the set 
of characters of X b  endowed with the *-weak topology. The space 0, is compact and 
there exists a natural continuous map (restriction of characters) ru : Cl + f l u .  According 
to definition 3.1 (ii), ru are surjective. 

Let us consider the net { C ,  = C(n,); U E  U} of commutative C* algebras. For 
each U ~ U , t h e m a p  i,:C,+C(n),definedby i,,(f)(o)=f(r,(w)),isanisometrical 
embedding. For this reason, we can speak of C[, as certain subalgebras of C(n). 

Proposition 3.3. (i) The family of algebras {C,; U E  U} generates C(n); 

Therefore, p [ a ,  + . . . + a k ]  = 0,  for any state p on X. Thus, 6, +. . . + a^k = 0. 

(ii) U e V implies Cu c C,; 
(iii) There exists one and only one action a” of IT: by automorphisms of C(n) 

(iv) For causally Separated U, V E  11, the map fuy:  CuOCv+ C(n) defined by 
0 

In other words, (C,,, a“, (C,,; U E  11)) satisfies properties ( I )  of the algebraic field 
theory. It is natural to interpret this field theory as a classical face of a field theory 
based on (X’, a‘, {Zb; U E U)) because it is obtained by ‘forgetting’ the non-commuta- 
tivity of Z’. 

with the property a;e = errb. For each U E  11 we have a i ( C u ) =  C,,,, ,; 

f u v ( a O b )  = ab  is an injective * homomorphism. 
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On the other hand, the quantum theory based on (X, a, {Xu; U E  U]) is obtained 
by 'forgetting' contextuality. Therefore, the triplet (2, a', {Xb; U E U]) can be con- 
sidered as a common refinement for the quantum field theory and for the corresponding 
classical theory. 

According to proposition 3.2, each simple context A E T  is isomorphic to FA(A). 
Let Tn denote the collection of algebras {F,(A); A ET} and for each U E 11 let T: = 
( FA(A); A ET,,}. It is easy to see that the families Tn and IT:; U E U) satisfy properties 
(2). 

Proposition 3.4. The algebra Lctx(C(Cl), {C,,; U E  u},T'') is naturally isomorphic to 
L c t x ( Z , { X , ;  UEU),T) .  

Proof: It is sufficient to prove that the correspondence A+F,(A) induces bijections 
T-T" and Tu ctT'2. Let us suppose that FA(A) = & ( E )  for some A,. BET.  This means 
that for each  EA there exists a 6s B such that F A ( 6 ) = F B ( b )  and vice versa. 

0 Proposition 3.2 implies a  ̂= 6 and we conclude that A = B. 

4. Generalized concept of probability and LHV extensions 

4.1. Contextual euent spaces 

In this subsection we shall present, independently of LHV extensions, a 'contextual' 
generalization of classical probability theory, free of problems with Bell's inequalities. 
In the next subsection we shall relate this contextual statistics with LHV extensions. 

Let K be a simplicial complex and let us suppose that for each point p E KO a set 
Cl, with a u-field Bp of its subsets is given. For each simplex { p , ,  . . . , p n }  = S E  K let 
us define a set CLs = C L p $  x . . . x CLpm with a u-field Bs = E,, x . . . x Bpm (the u-field 
generated by products of sets from Bp,). 

Definition 4.1. A contextual euent space of ihe fype  {Cl,; S E  K} is a pair (CL, {as; S E  K}) 

that r s ( w ) = ( r p , ( w )  , ___ ,  r P n ( w ) ) ,  for each  WE^ and S = { p  ,,..., P.]EK. 

Let (C l ,  {as; S E  K]) be a contextual event space. For each S E  K, let us introduce a 
family Ps = aS1(Bs) of subsets of R. Clearly, P, is a u-field on 0 isomorphic IO Bs. 
Finally, let P = USEK P, and let 

tion. The points p E Kv correspond to simple experimental arrangements (simple confexfs), 
the other simplexes S E  K correspond to composite confexts, the points UJ E Cl correspond 
to elementary euents, the elements of Ps are events rhai can be actualized in the conlext 
S and finally, the elements of P are actualizable events. 

Definition 4.2. A probabiiiiy measure on (a, ins; S E  K}) is a map p : P - [ O ,  11 wkh 
the following properties: 

... ham n ir --A I- . C c Y l  in mllpr+;nn A f  c l . r i r r t i x i m  mnnr - :O-rO. .  a ~ r h  
W ' l r l r  1' 1 1  a 0L.L PI." , , , S , " ~ , . ,  ,. I"..v..L.".I "L *".,'-...- ..... y" .,>.". . .-> I"_.. 

be a u-field generated by P. -- .--.:..-.:-.. L--- ' - A"=..:.:-.. P-,.... - -,.--iL,- :..mmnt.. 
1 ,IC llluLl"allUl' 1"1 >"Cl, d "CilllllLlUll CUIIIGJ ll"lll cl y"""1V1c C V I I L L A L U I I  ... L'.Y.*.*. 

( i )  do)= 1; 
(ii) For each finite subset F G K" there exists a real-valued measure pF on k such 

that p F ( A )  = p ( A ) ,  for each simplex S G  F and each A E  P,. 



Quantum field theory and local contextual extensions 613 

An immediate consequence of this definition is that restriction of p to each Ps gives 
an ordinary probability measure. 

For given contextual event spaces {(aj, {a$; S E  K}); i = 1 , .  . . , k} of the types 
{ab; SE K) respectively, we can naturally define their product. To do this, let us consider 
the set R*= n , x  ... xR, and maps a: = . n ~ x  . . .  x a a : R * ~ n b x  . . .  x R ~ .  It is easy 
to see that (a*, {rf; S E  K)) is a contextual event space of the type {Ri  x .  . . x R:; S E  
K). Now, let 

k 
P$=(&-'(Bb) pi= U p; P; = aS' (B i  X ,  . . X E : )  P * = U  P: 

SsK < = I  

We denote the u-fields on R i  and R*, that are generated by P' and P* respectively, 
by ki and 9. The following proposition is a direct consequence of our definitions. 

Proposition 4.1. (i) Pz = P i x  . . . x P: for each S E  K 
(ii) P*G B ' x . ,  , x Sk; 
(iii) If p! are probability measures on (a;, {a$; SE K)) respectively, then there 

exists a unique probability measure p* = p,  x . . . x pk on (CL*, {as; SE K}) such that 

p*(A,X...XAt)=p~(A~)...pk(Ak) 

for each S E  ii ana ii; E Pi .  0 

For our discussion, it is very important to consider the case n, = . . . = Rk and p,  = . . . = 

pk = p. This corresponds to  the situations in which the initial experiments are repeated 
k-times. The following proposition then establishes a 'contextual version' of Bernoulli's 
law of large numbers. The proof can be easily reduced to the proof of the ordinary 
Bernoulli law. For @*sa* and AEP, let r,,(o*) denote the relative frequency of 
occurrence A in w* .  

Proposition 4.2. For each A E  P and E > O ,  let ATsn* be the set of all  ER* in 
which Ir , , (o*)-p(A)lPE.  Then 

(i) A. E P*; 
(ii) @*(A:)< l/(4km2). U 

The fact that the law of large numbers holds implies (just as in the classical case) the 
possibility of empirical foundation of these statistics. All probabilities are interpretable 
in terms of relative frequencies of occurrence. 

4.2. Statistics of LHV extensions 

We now go back to the quantum field theory. The collection T of all simple contexts 
has a natural structure of a simplicial complex: simplexes are just elements of the 
family ?. For each A E ?  let BA denote the Baire v-field of R4. 

Let (X', 4, { l a ;  A E TI) be an L H V  extension and R the space of characters of I'. 
For each context A € ?  let r A : R + R A  denote the map defined by T ~ ( w ) = w L ~ .  This 
map is obiained by iransposing ihe iiomoiiioiphism FA : doiii(A) - C(G). Proposition 
3.2(i) implies that aA is continuous and surjective. In terms of the identification 
RA =@,, x . .  . x R A L ,  theequality a A ( w )  = ( a , , , ( w ) ,  . . . , a A A ( w ) )  holds. Consequently: 

Proposition 4.3. The pair ( R , ( a A ;  A E ? } )  is a contextual event space of the type 
{aA; A€?) .  0 
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For each A E ?, let PA = r2 ' (BA)  and P =  UA,f PA. It is instructive to think about the 
elements of P as of quantally interpretable subquantum events. The elements of PA 
correspond to events that can be actualized in the context A. 

Proposition 4.4. For ea.ch g E U! and A E ?  one has 

d ' (g)(pA)=pg(~i .  

In particular, P is Poincari-invariant. Here, d' is the induced action of U! on n 

ProoJ Definition 2.1 implies D I ~ L ~  = LpcAlolpiA for each A E ?  and g E II:. At the level 
of the spaces of characters, this equality has the following form: 

T g c A i d ' k )  = ~ A ( P ) T A  (4) 

where dA(g) :nA+n,,,, is a homeomorphism defined by d A ( g ) ( w )  = wm;'ig(A).  The 
statement of the proposition is a direct consequence of this equality and of the definition 
of P. U 

Now we shall see that any quantum st:te p (a state on Z) determines canonically a 
probability measure pp on (a,  InA; A ET}). For each A E ?, let pp,A denote the probabil- 
ity measure on (aA, BA) induced by the state piA. 

Proposition 4.5. For each quantum state p there exists one and only one probability 
measurepLp:P+[O, l ] o n ( ~ , { ~ ~ ; A ~ ? } ) ~ u c h t h a t p ~ ( A ) = p ~ , ~ ( ~ ~ ( A ) ) f o r e a c h A ~ ?  
and A E P ~ .  

Proof: It is clear that the measure pp is, if it exists, unique. Let us show its existence. 
According to condition ( i )  of definition 3.1, for each finite set F G T and each state p 
on X there exists a continuous linear functional p on C(n) such that p(FA(a*)) = p ( 6 )  
for each A c F and a* E dom(A). The functional ,? induces [ 141 a real-valued measure 
U on the Bore1 u-field B(R). For A E P ~ ,  this measure satisfies the equality . (A)= 
P ~ , ~ ( T ~ ( A ) ) .  In particular, if 

PA, n PA, then P ~ , A , ( ~ A , ( A ) )  = P,A, (TA, (A) ) .  

Consequently, for A E PA, the formula pL,(A) = pp,A( v A ( A ) )  consistently defines a map 
0 

It is natural to interpret the elements of the family P as subquantum events thot possess 
a quontum meaning. Accordingly, there should exist a natural map ('quantum inter- 
preter'): 

p p :  P+[O, 11 with the desired properties. 

{elements of P}+ {quantum events] 

compatible with the statistical averages. Our next proposition establishes the existence, 
uniqueness and the main properties of such an entity. Let D be a faithful representation 
of X in a Hilbert space H. The quantum events (corresponding to D )  can then be 
identified with the projectors in the bicommutant D(X)". 

Proposition 4.6. (i) There exists one and only one projector valued map CO: P +  P ( H )  
such that pp(A)=Tr(c,,(A)6) for each state p induced by a statistical operator 6 in 
H and each A E P; 
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(ii) For each AE?, let C ~ , ~ : B ~ - * P ( H )  denote the spectral measure of the rep- 
resentation DiA of dom(A) in H. Then c ~ ( A ) = c ~ , ~ ( T ~ ~ ( A ) ) ,  for each A E P ~ .  In 
particular, a restriction of cD to PA gives a projector valued measure; 

(iii) The image of the map cD is contained in the bicommutant of D ( Z )  in H; 
(iv) Let A I ,  . . . , Ak be mutually disjoint elements of P and Cl = A ,  U. . .U Ax. Then 

c,(A,), . . . , % ( i l k )  are mutually orthogonal projectors and cD(Al)+. . .+cD(Ak) = I. 

valued measure. 

ProoJ: For A E PA we define %(A) to be equal to cA.J rA(A) ) .  A necessary and sufficient 
condition for the existence of a global map cD: P-t P(H) is that c ~ , ~ ( T ~ ~ ( A ) )  does not 
depend on A. Let A E  PA, nP,, and F = A ,  U A*. According to the same reasoning as 
in the previous proof, there exists, for each statistical operator j in H, a real-valued 
measure Y on B(Cl) such that ~ ( A ) = T r [ p ^ c ~ , ~ ( ~ r ~ ( A ) ) 1  for each context A c F  and 
A E P. Especially, 

part.ic.g!ar, the restri&on of c, to my finite n,o!ea" sI?ha!gebra nf p i s  a pro$c!nr 

Tr[bcA,,D(~~,(A)) l  = Tr[bC~,.~(ma,(A))l 
which implies the equality C ~ , , ~ ( T ~ , ( A ) )  = CA,.D(TA,(A)).  

Let us now suppose that another map rb:P-P(H) satisfying the equation 
Tr(p*cb(A)) = pp(A)  is given. Then Tr(p^(cD(A) - &(A))) = 0, for each A E  P and each 
statistical operator p  ̂ in H. Thus, cD(A) = &(A). 

The fact that the image of the map cD is contained in the bicommutant of D ( X )  
is a consequence of the fact that the image of each spectral measure c , , ~  is contained 
[14] in the bicommutant of D[dom(A)]. 

Finally, let A , ,  . . . , A, E P form a decomposition of 0. Then for each statistical 
operator 6 in H there exists a normed real-valued measure Y on B ( 0 )  such that 
v(Aj)=Tr(&(Ai)), i E { l , .  . . , k). Summing over all i and taking into account the 
arbitrariness of p̂  we obtain an equality cD(A,)+. . .+cD(Ak)= I. On the other hand, 

U 

In this proposition, we have not assumed that the representation D is Paincar&- 
covariant. lfthis is the case, then the 'quantum interpreter' cD is ais0 Pyincare-covariant. 

More precisely,!et us suppose that a unitary representation A:III+ U ( H )  of the 
universal covering Ill of lT! is given, such that D(f , (a ' ) )  = A(i)D(t)A(i) '  for each 
g' E Ill and a' E Z. Here, g EII! is the projected i E II!. 

Proposition 4.7. For A E P and g E fi!, the following equality holds: 

if a sum of projectors is equal to unity then they are mutually orthogonal. 

.. . . 

C~[d'(g)(A)l= A(&?)CD(A)A(&?)+. 

Proof: It is easy to seethat C , ( ~ , , ~ [ & ( ~ ) ( S ) ]  = A ( ~ ) c ~ , ~ ( S ) A ( ~ ) + ,  for each AE?, SE BA 
and i~fi!. Together with the equality (4) and property (ii) of proposition 4.6, we 
obtain the desired equality. U 

5. Concluding remarks 

In this study we have shown that algebraic quantum field theory can be interpreted 
as a coarse-grained face of a local and causal subquantum theory so that, from the 
point of view of this finer theory, the whole quantum stochasticity is explained via the 
lack-of-knowledge scheme. 
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It is instructive to compare the presented subquantum theory with RCdei’s study 
[le], according to which algebraic quantum field theory does not admit any ‘local 
hidden variables’ refinement. 

For an appropriate quasilocal structure (X, { X u ;  U E U}), representing the ‘quantum 
world’, Ridei introduces a notion of local hidden theory, which consists of another 
quasilocal structure (2, {XL; U E  U}) and a unital positive linear map L : X ’ + X  such 
that, besides appropriate locality and covariance conditions for L, each quantum state 
p is reaiizabie as a probabiiity measure p p  on the state space S(Z) o i  2’ in the sense 
that 

for each 6 E X‘. 
The map L is a counterpart for the ‘forgetting homomorphism’ 4 in the presented 

approach of LHV extensions. 
In decomposition (5) it is also assumed that the dispersion of 6 in o is, for each 

w E supp(p,), less than the dispersion of L ( b )  in p (see [ 181 for details). Here, supp(pLp) 
is the support of pp. 

The restriction to causal theories, which we are interested in, is equivalent to 

SUPP(F,) 

for each p. Here, Cl is the space of characters (dispersion-free states) of X’, 
Relation ( 5 )  now becomes 

However, compared with property (i) in definition 3.1 ,  condition ( 6 L  is much 
stronger. First of all, there is n o  physical reason for (6) to be valid for all b, because 
it may happen that some b are not accessible through any quantum meas?rement. 
From the p?int of view of contextual extensions, only elements of the form b = iA((i), 
where A E T  and h E dom(A), should figure in ( 6 ) ~  

Secondly, even if we require (6) to hold only for ~ ~ ( a * ) ’ s ,  the Bell inequalities 
obstruction still remains. This is a direct consequence of the results of Summers and 
Werner already mentioned, and the fact that pLp in (6) is a classical (Kolmogorovian) 
probability measure. 

On the other hand, the concept of contextual statistics, incorporated in the approach 
of L H V  extensions, allows us to overcome the difficulties with Bell’s inequalities. 

Of course, contextual statistics is not the only way of overcoming the obstruction 
of the Bell inequalities. For example, statistics based on u-classes [lo,  111 or on 
amplitude densities [12] also have this property. 

However, disregarding technical details, any other statistics should contain the 
contextual statistics as its part. This is so because the domain of the contextual statistics 
is exactly the family of quantally actualizable events. On the other hand, any satisfactory 
statistical description should include these events. 

To conclude, let us relate the approach of L H V  extensions, and Bell’s ‘beable 
quantum field theory’ [41. 

If (X’, 4, {la; A E T ) )  is an L H V  extension, then the elements of the form { L A ( & ) ;  A E  
T, â  = a^+ E A }  are interpretable as ‘elementary beables’ of the theory, because they 
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possess a direct physical meaning (as quantum observables viewed through simple 
measurement contexts), and definite values in each subquantum state o E Cl. 

Other Hermitian elements of 2' are of the 'beable type', too. This is so because 
'elementary beables' generate the whole 2' (see definition 2.1, property (ii)), and 
because a state p' on X', dispersion-free on elementary beables is dispersion-free on 
the whole 2' (that is, P ' E ~ ) .  

In this sense the theory based on LHV extensions is a special case of the beables 
quantum field theory of Bell, because all variables are -beableS. 
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